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Abstract 

A class of graphs called spirographs is defined. It is shown that the character- 
istic polynomials of spirographs can be obtained in terms of the characteristic 
polynomials of smaller graphs by pruning the spirographs at the spifal points. 
Elegant recursive relations are derived for many spirographs. Characteristic poly- 
nomials of branched spirographs are also obtained. 

1. Introduction 

The evaluation of the characteristic polynomials of graphs has been the subject 
of many investigations [1 - 4 0 ]  in recent years. The evaluation of these polynomials 
for graphs is generalty regarded as a tedious problem as a result of the combinatorial 
complexity. There are a number of chemical applications of these polynomials. Many 
of these applications are discussed in the references quoted above [ 1 - 3 4 ] ,  but in 
particular in the recent references [ 1 0 - 1 3 ] .  

The characteristic polynomials of graphs have applications in chemical 
kinetics [37], dynamics of oscillatory reactions, quantum chemistry, determination 
of the stabilities of reaction networks [35], lattice statistics [38], estimation of the 
stabilities of conjugated systems [27], formulation of the TEMO theorem [39], 
enumeration of walks and self-returning walks [3],  and electronic structure of organic 
polymers and periodic structures [4,11 ]. 

The present author [8,38] has been interested in deriving recursive methods to 
generate the characteristic polynomials of graphs. While there are no general recursive 
procedures for all graphs, recursive relations could be derived for some classes of 
graphs. The present author [8] developed an elegant tree-pruning procedure for the 
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characteristic polynomials of graphs with pending bonds [9] and the characteristic 
polynomials of weighted trees and weighted structures with pending bonds [10]. 
More recently, the present author [38] showed that the method of tree pruning 
could be applied to the lattice statistics of Bethe lattices, which are used extensively 
in statistical mechanics. 

In this investigation, we introduce a class of graphs called spirographs which 
are obtained by soldering cyclic graphs at single points. The spirographs introduced 
here appear in several chemical applications. Many silicates can be represented by 
spiral networks. Thus, the polynomials would be of use in classifying the networks. 
A class of spirographs called Cacti graphs are useful in lattice sta~istics in statistical 
mechanics. We develop recursive procedures for computing the characteristic poly- 
nomials of spirographs. The procedure is applied to a number of spirographs contain- 
ing triangles, squares and hexagons. Section 2 describes the method of investigation. 
Section 3 comprises results and discussions. 

2. Spi rographs  and  their  charac te r i s t i c  p o l y n o m i a l s  

A. SPII),O(;R APlfS 

We coin the term 'spirographs' motivated by the term 'spirocycle' used in 
organic chemistry for a class of ring compounds which are obtained by joining two 
rings at a single vertex such that the two rings have only one common vertex. Figure 1 
shows an example of a spirograph containing two '4-membered rings' or containing 
two 4-cycles. 

¢+ 
Fig. 1. A spirograph containing two squares. 

A spirograph can be obtained from simple ring graphs by 'soldering' or joining 
a single vertex of one ring to a single vertex of another ring so that the two vertices 
are fused to become a single vertex in the final soldered graph. The resulting single 
vertex is called a spiral vertex in this investigation. We show here that the characteristic 
polynomials of spirographs can be obtained by pruning the spirograph at the spiral 
points. The general method of pruning was developed earlier for trees. We show here 
that when the pruning method is applied to spirographs correctly, one could generate 
the characteristic polynomials of spirographs. In section 2B, we briefly outline the 
pruning method. 
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B. PRUNING METHOD AND CHARACTERISTIC POLYNOMIALS 

If the spirograph in fig. 1 is cut at the spiral point, one obtains the two graphs 
shown in fig. 2. with the spiral vertex identified by a closed circle. For convenience, 
ler us call the first graph Q (the quotient graph) and the second graph T (the type). 
The graph in fig. 1 is then obtainable by joining the two black vertices (spiral vertices) 

<> + 
Q T 

Fig. 2, The two graphs resulting fron1 pruning the spiro- 
graph in fig. 1. The spkal vertex is the shaded vertex. 

together into a singte vertex. This procedure was formulated earlier for trees by the 
present author [41] and was called a root-to-root product, We show hefe that the 
characteristic polynomial of the original spirograph in fig. 1 can be obtained from the 
characteristic polynomials of the pruned graphs Q and T in fig. 2. 

The characteristic polynomial of a graph G in general is defined as the secular 
determinant of the adjacency matrix A of the graph shown below: 

P c ( x )  = lA - x:l, (1) 

where the adjacency matrix A is defined as 

Aq 

1 if i 4 : / a n d t h e  
vertices i and j are connected 

0 otherwise. 
(2) 

Let us consider the graphs in figs. 1 and 2 as examples. Let the characteristic 
polynomial of type T in fig. 2 be denoted by h. It can easily be verified that 

h = X4 _4X2 (3) 

Let T' be the graph obtained by deleting the spital point (black vertex) of graph T 
in fig. 2. Let h' denote the characteristic polynomial of T with the spiral point deleted. 
It can easily be seen that h' is given by 

h ' =  X 3 - 3X, (4) 
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Define the reduced adjacency matrix of  the quotient graph (2 as follows: 

Aij = 

-1 if i 4=/, i and ]" are connected, and i is not a spiral vertex 

- h '  if i =/=j, i and ]' are connected, and i is a spital vertex 

X if i = ] and i is  not a spital vertex 

h if i = / and i is  a spiral vertex. 

(5) 

The determinant of  the matrix A is simply the characteristic polynomial of the original 
spirograph. For the example we started with, we show below the reduced adjacency 
matrix with the convention that vertex 1 is the spiral vertex: 

A = 

m ! m 

t7 - h  0 - h '  

-1 X -1  0 

0 -1  X -1 

-1  0 -1 X 
n m 

(6) 

The determinant of  the above matrix is easily seen to be 

Det(A)  = X3h - 4X2h ' . (7) 

By substituting for 1l and h' the expressions (3) and (4) previously obtained, we find 
the characteristic polynomial of the original spirograph to be 

X v - 8X s + 12X 3 . (8) 

Consequently, in this case, the original problem of evaluating the characteristic poly- 
nomial of a graph which contains seven vertices is reduced into a problem of  obtain- 
ing the characteristic polynomial of  a simpler non-spiro graph containing four vertices. 
The procedure can be extended further to graphs which contain many spiral points. 
The resulting simplification grows exponentially (!) as the number of  spital points 
increases. 

To illustrate the above point, consider the spirograph in fig. 3 which contains 
two spital points. Let the characteristic polynomial of  a spirograph containing n 
square rings be h n. One can derive actually a recursive relation for tl,, which can be 
solved iteratively. In the present example, we seek a solution for h a. If one prunes 
the spirograph in fig. 3 at the first spiral vertex and applies the method outlined 
earlier, it can be shown that 
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<;x2>~ 
Vig. 3. A spirograph containing three squares, 

h 3 = X3h2 - 4X2h'2 . (9) 

To obtain h2,  we prune the spirograph containing two squares. Thus, h 2 is given by 

h 2 = X3/q - 4X2h'~ . (10) 

The polynomial h'  2 is given by 

h' 2 : X 2 h l -  2Xh'l . (11) 

Thus, h 2 and h'  2 are determined if one can find tq and h[.  The polynomials h 1 and 
h I are simply the characteristic polynomials of a single 4-membered cycle and a chain 
containing three vertices, respectively. They are given by expressions (3) and (4), 
respectively. One can obtain h 2 and h' 2 from h~ and h'~: the polynomial h 3 can be 
obtained once h 2 and h' 2 are found. Thus, the final polynomial for the spirograph 
in fig. 3 is given by 

h 3 = X 1° - 12X 8 + 40X 6 - 32X « . (12) 

In this example, the characteristic polynomial of a spirograph containing ten vertices 
could be generated from the characteristic polynomial of a square graph and a chain 
containing three vertices. 

The above procedure could be generalized to any spirograph containing n rings, 
For a linear spirograph which contains n square rings, we obtain the following 
recursive relations. Let h n denote the polynomial of such a spirograph containing 
n rings. Using the pruning method developed earlier, the following relations can be 
derived: 

t 

hn = XŒ hn -1 - 4 X2 hn -1 

hn 1 = ~2hn 2 -  4X2h' 
- - ? 1  - 2 

h 2 =X2hl - 4 X h  I 

(13)  

h 1 =X 4 - 4 X  2 

hl -- x 3 - 3 x .  
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Thus,  c losed  ana ly t i ca l  so lu t ions  exis t  for  the  cha rac te r i s t i c  p o l y n o m i a l s  o f  l inear-  

sp i rographs  con t a i n ing  n square  rings.  As we show in the nex t  sec t ion ,  s imilar  recursive 

re la t ionsh ips  can be o b t a i n e d  for  m a n y  sp i rographs .  

3 .  R e s u l t s  a n d  d i s c u s s i o n  

In this  sec t ion ,  we cons ider  m a n y  classes o f  sp i rographs  and  derive recurs ive  

r e l a t ionsh ips  and  the  ac tua l  cha rac te r i s t i c  p o l y n o m i a l s .  

F o r  the  l i nea r - squa re - sp i rog raphs ,  the  recursive re la t ions  (13 )  for  the  cha rac te r -  

ist ic p o l y n o m i a l s  were der ived  in sec t ion  2B. Table  1 shows the ac tua l  cha rac te r i s t i c  

Table 1 

Characteristic polynomials of linear-square-spirographs ( ~ ) n 

n Polynomial 

1 5.  4 - 4x 2 

2 5̀7 _ 85: + 125` 3 

3 5̀1o _ 12x~ + 40?,6 _ 325`4 

4 ?̀1= _ 16?`11 + 8 4 5 ` 9  ....... 160X7 + 805 .̀~ 

5 716 _ 207`1« + 1447`12 _ 4487`1o + 560?`8 _ 1927`6 

ó ?̀ 19 _ 247`1v + 220als ._ 9607`13 + 20167`11 ....... 17927`9 + 448?`7 

7 ?̀=2 _ 28?`20 +3127`1s _ 1760X16 +5280ä4  _ 80645`12 +53767`1o .... 1024aa 

8 X 2s .... 325` =3 +4205. =I -- 29125.19 + 114407` lv - 253447` is +295687` 13 

- 15 360?` 11 + 2304?` 9 

9 ?`2~  _ 367`2e + 544X=a _. 44805.2= + 2l 840X 2° - 64 0645` 18 + 109 8245.16 

- 101 376?` 14 +42240?` 1= - 51207` 1° 

10 ?̀=1 _ 40?`29 +684X:7 65287`== +38080?`2= _ 1397767`=i +3203207`19 

- 4392965.17 + 329472ä  s - 112640?` 13 + 11 264?` 11 

p o l y n o m i a l s  for  l i nea r - squa re - sp i rog raphs  for  n = 1 to  10. All the p o l y n o m i a l s  shown  

in the  table  were o b t a i n e d  using the  recurs ive  r e l a t ion  der ived  in sec t ion  2B f rom 

s imply  the  charac te r i s t i c  p o l y n o m i a l  o f  a cyc le  c o n t a i n i n g  four  ver t ices  (C4) and  a 

l inear  chain  con t a in ing  th ree  ver t ices  (l 3). 

N e x t ,  we cons ide r  a set o f  l i nea r - t r i ang le - sp i rog raphs .  F igure  4 shows an 

e x a m p l e  o f  a l i n e a r - t r i a n g l e - s p i r o g r a p h  c o n t a i n i n g  six rings.  The m e t h o d  o f  p run ing  

the  sp i rog raph  at  the  spiral  po in t s  can be a p p l i e d  to  the  t r iangle  sp i rographs .  L e t h  n 
d e n o t e  the  cha rac te r i s t i c  p o l y n o m i a l  o f  a t r iangle  sp i rog raph  which  con ta in s  n rings. 

The the  recursive re la t ions  for  hn's are shown in tab le  2. Table  3 shows  the ac tua l  

cha rac te r i s t i c  p o l y n o m i a l s  o f  l inear  sp i rog raphs  c o n t a i n i n g  t en  or less t r iangles .  
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l " ig .  4 .  A l i n e a r  s p i r o g r a p h  w h i c h  c o n t a i n s  s i x  t r i a n g l e s .  

T a b l e  2 { ~ , / )  

R e c u r s i v e  r e l a t i o n s  f o r  t h e  l i n e a r - t r i a n g l e  s p i r o g r a p h s  / ">  

\ / '  \ / n  

h~ ä - 3 X -  2 

< x ~- 

h~ x ~ ~  - x~',  = - 2 h ,  h', - 2h'? 

~ ;  a b ,  - h;  

t 

= = _ ~.h 2 -- 2h  n - '  - 2h~z= - hn ~ h n -  1 - ~ h n -  ~ 

T a b l e  3 

C h a r a c t c r i s t i c  p o l y n o m i a l s  o f  s p i r o - t r i a n g l e - g r a p h s  ( n  = 1,  1 0 )  

n P o l y n o m i a l  

1 0  

1 ? d -  3 X - 2  

2 ~s _ 6~2 - 47d  + 5 , ' , + 4  

3 X 7 - 9 ? d  - 6 X  4 + 1 9 X  3 + 2 0 X  2 - 3 X - 6  

4 Z? - 1 2 7 d  - 8 X  « + 4 2 X  s + 4 8 X  4 - 3 2 ? ,  3 - 5 , 6 ~  2 - 7 X + 8  

5 X ~~ - 15~,  9 - 1 0 X  ~ + 7 4 X  7 + 8 8 X  6 .... l 1 4 7 d  -- 2 0 4 X  4 + ? s  + 1 1 2 ä 2  + 2 9 7 , _ 1 0  

6 hl~ _ 18X~~ _ 1 2 x ~ o  + 1157t9  + 1 4 0 a s  _ 2 7 6 X 7  _ 5 0 4 X 6  + 1 2 3 a s  + 5 9 2 h 4  + 1 7 8 X 3  

- 1 7 2 7 d  - 6 7 x +  1 2  

7 x Is  - 2 1 x  13 - 1 4 X  12 

+ 4 5 3 x  s _ 1 2 6 6 x  4 _ 

8 )d 7 - 2 4 X  Is  - 1 6 h  14 

+ 5 3 6 ~ ?  - 5 4 8 8 X  6 - 

9 X ~ 9  - 2 7 ~ }  ~ - 1 8 X  16 

+ 1 6 5 X  t~ + 2047,1 ° _ 5 4 5 ; t  9 _ 1 0 1 0 ,  8 + 5 3 9 X  7 + 1 9 4 4 7 ,  6 

6 7 7 ~  3 + 1 9 6 7 ,  2 + 1 2 5 h -  1 4  

+ 2 2 4 h  ~3 + 2 8 0 X  ~2 _ 9 4 8 X  u _ 1 7 7 6 X ~ o  + 1 5 1 0 X  9 + 4 8 8 0 ~  8 

3 0 6 8 ? ,  s + 1 9 5 2 ~ .  « + 1 7 1 2 X  3 - l 1 2 X  2 - 2 0 7 X + 1 6  

+ 2 9 2 ~ }  s + 3 6 8 X  ~« - 1 5 1 2 X  ~~ - 2 8 5 6 X  ~2 + 3 3 7 8 X "  

+ 1 0 3 2 8 X  ~° - 4 5 8 h  9 - 1 7 2 6 0 X  8 _ 9 0 2 0 X  7 + 1 1 3 4 4 X  6 + 1 0 6 0 4 h  s _ 1 5 9 2 X  4 

- 3 4 7 1 X  3 - 1 9 2 7 ,  2 + 3 1 7 7 , -  1 8  

h~l _ 3 0 X  19 _ 2 0 X  Is  + 3 6 9 ~ }  7 + 4 6 8 X  16 _ 2 2 6 4 a }  s - 4 3 0 4 h  l* + 6 5 6 6 X  13 

+ 1 9 4 3 2 h  ~2 - 4 2 2 4 h  u - 4 4  0 4 0 X  ~° - 1 9 9 1 0 h  9 + 4 5 4 0 0 h  8 + 4 2  1 5 2 X  7 

- 1 4 6 0 8 X  6 - 2 7  2 2 7 a ?  - 2 2 7 2 h *  + 5 9 7 8 X  3 + 8 7 6 X  2 - 4 5 9 ~ , + 2 0  
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In comparing the results in tables 1 and 3, we note that the coefficient of the 
second term in the characteristic polynomials of both the classes of graphs is given by 

- m  • n , ( 1 4 )  

where m is the number of vertices in individual rings (four for square, three for tri- 
angle) and n is the number of rings in the spirograph. For spirographs containing 
squares, the lowest power in the characteristic polynomial is given by X n +1. The 
coefficient of  this term is always a multiple of four. In fact, the coefficients of all 
the terms in the characteristic polynomials of square spirographs are found to be 
multiples of four. 

The pruning method developed in section 2 can be applied to even more 
complicated spirographs. Consider a class of spirographs which contain hexagons. An 
example of a linear spirograph containing three hexagons is shown in fig. 5. Suppose h n 

< >  ;><> 
I:ig. 5. A linear spirograph which contains three hexagons. 

denotes the characteristic polynomials of linear spirographs containing n hexagons. 
Then recursive relationships can be derived for h n's for various n's using the pruning 
method in section 2. Table 4 shows the final characteristic polynomials of linear 
spirographs containing up to eight hexagons. All the polynomials were derived from 
simply the characteristic polynomials of a hexagon (C n) and a linear chain of length 
live (ls). The second coefficient of the polynomials for the linear spirographs 
containing hexagons also follows the same pattern previously discussed. The magni- 
tude of the constant coefficient of the polynomials in table 4 follows the general 
expression 

{ 0  if /7 is even 

ICl = 4 n-1 if n i sodd .  
(is) 

Further, the constant coefficients alternate in sign for n = 1,3, 5, 7. etc. 
Finally, we would like to show that the pruning method is applicable even 

if there are multiple spiral points in a given ring. As an example of this, consider the 
spirograph which contains three triangles shown in fig. 6. When the spirograph in this 
figure is pruned simultaneously at the two spiral points, one obtains the quotient 
graph Q and two sets of  type T in fig. 7. The reduced adjacency matrix A for Q is : 
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T a b l e  4 

C h a r a c t e r i s t i c  p o l y n o m i a l s  o f  l i n e a r  s p i r o g r a p h s  c o n t a i n i n g  h e x a g o n s  

n P o l y n o m i a l  

x 6 - 6 X  4 + 9 X  ~ - 4 

X ~1 - 1 2 X  9 + 5 0 x  ~ - 9 2 X  s + 7 7 X  3 - 2 4 X  

X i s  - 18~,  14 + 1 2 7 X  ~2 - 4 5 6 X  1° + 9 1 1 X  8 - 1 0 3 4 X  6 + 6 4 1 X  4 - 1 8 8 ~ 3  + 1 6  

X 21 - 2 4 X  19 + 2 4 0 X  17 - 1 3 1 2 X  Is  + 4 3 3 8 ~  13 - 9 0 8 0 X  I l  + 1 2 2 1 6 X  9 - 1 0 4 4 8 ~ :  

+ 5 4 2 9 ~ ,  s - 1 5 3 6 ~ d  + 1 7 6 X  

X 26 - 3 0 X  2« + 3 8 9 X  ~2 - 2 8 7 6 X  2° ~- 1 3 4 9 0 X  Is  - 4 2  3 2 4 X  ~6 + 9 1 2 9 8 X  ~" 

- 1 3 6 9 4 4 X  ~~ + 1 4 2 4 4 5 X  ~° - 1 0 0 8 3 0 x  8 + 4 6 5 5 3 X  6 - 1 2 8 6 8 X  « + 1 7 6 0 X  2 - 6 4  

X~l _ 3 6 X  ~9 + 5 7 4 X  ~7 _ 5 3 6 4 X  ~s + 3 2 7 9 5 ~ ,  23 _ 1 3 8 8 0 0 X  2~ + 4 1 9 9 5 6 X  ~9 

- 9 2 5  1 6 0 X  ~~ + 1 4 9 6  8 7 1 X  ~s - 1 7 7 9 0 7 6 ~  ~~ + 1 5 3 9 5 9 8 X  ~~ - 9 5 0 5 0 0 X  9 

+ 4 0 3 1 0 1 X  7 - 1 0 9 6 7 2 X  s + 1 6 7 3 6 X  3 - 1 0 2 4 ~ ,  

X ~6 - 4 2 X  34 + 7 9 5 X  32 - 8 9 9 2 X  3° + 6 7  9 7 7 X  ~~ - 3 6 4  1 9 0 X  26 + 1 4 3 1  4 6 7 X  24 

- 4 2 1 7 4 2 0 X  22 + 9 4 3 6  3 3 1 x  ~° - 16  1 4 3  8 4 6 X  ~8 + 2 1  1 4 5  8 6 5 X  16 - 2 1  1 1 3  9 9 2 X  ~« 

+ 15  8 9 4  7 4 7 X  12 - 8 8 4 3  4 1 0 X  ~° + 3 5 1 7  4 8 9 ~  8 9 4 5  9 9 6 X  6 + 1 5 5  6 3 2 X  « 

- 1 2 6 7 2 X  2 + 2 5 6  

X 4~ - 4 8 X  ~9 + 1 0 5 2 Æ  ~7 - 1 3 9 7 6 ~  ~s + 1 2 6 0 5 6 X  33 - 8 1 9 6 0 0 X  3~ + 3 9 8 2 6 8 4 ~ ,  ~9 

- 1 4  8 0 3  5 6 0 ~ ?  ~ + 4 2  7 3 7  2 0 2 ~ .  2s - 9 6  7 7 0 3 3 6 X  ~3 + 1 7 2  8 0 6 0 8 4 X  ~~ 

- 2 4 3  7 7 7  0 0 0 X  ~9 + 2 7 1  0 0 9  9 3 6 X  ~'  - 2 3 6  1 6 0 3 3 6 ~ d  s + 1 5 9  2 8 6  7 7 2 X  ~~ 

- 8 1 6 4 2 7 7 6 , k  ~~ + 3 0 8 8 4 5 4 9 X  9 - 8 2 3 3  1 6 8 X  7 + 1 4 3 1  1 2 0 X  s - 1 4 0 0 3 2 X  3 

+ 5 3 7 6 X  

F i g .  6 .  A l i n e a r  s p i r o g r a p h  

c o n t a i n i n g  t h r e e  t r i a n g l e s .  

Q T 
F i g .  7 .  T h e  q u o t i e n t  g r a p h  Q a n d  t y p e  T ( t w i c e )  

r e s u l t i n g  f r o m  p r u n i n g  t h e  g r a p h  i n  f i g .  6 .  
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I X -1  -1  1 -h i tq -lq 
P t -lq -tq tq 

(16) 

The determinant of  the above matrix is 

X(h2~ - h'~ 2)  - 2h'~ I t ,  - 2h'~: ( 1 7 )  

If orte substitutes f o r / q  and h' 1 by the expressions in table 3 for the triangular graphs, 
one obtains the final polynomial as 

~.((~3_ 3 X -  2) 2 -  (X 2 -- 1) 2) - 2(~, 3 - 3 ~ . -  2)(~, 2 -  1) -- 2(X 2 -- 1) 2 . (18) 

Upon simplification, the above expression yields the characteristic polynomial of  the 
graph in fig. 6 to be 

X 7 - 9Z s - 6X a +19X 3 + 2 0 B  - 3 X - 6 .  (19) 

The proposed method can also be applied to other irregular branched spiro- 
graphs or circular spirographs. Consider, for example, the triangular spirograph in 
fig. 8. The characteristic polynomial of  this graph can be obtained in two steps of  
pruning. The simplified expression for the polynomial is: 

X13 __ 18Xl 1 - 12xl° + l lSX  9 + 140X a - 284X 7 - 536X 6 + 119X s + 7 2 8 X  • 

+ 366X 3 -  156X 2 -  1 7 1 X - 3 6 .  ( 2 0 )  

Fig. 8. A branched triangular spirograph containing six rings. For 
the characteristic polynomial of this graph, see expression (20). 
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l:ig. 9. A branchcd triangular spirograph containing scvcn rings. For 
the charactcristic polynomial of  lhis graph, sec cxprcssion (21). 

C o n s i d e r  the  b r a n c h e d  t r i angu la r  sp i rog raph  in fig. 9. The  c h a r a c t e r i s t i c  p o l y -  

n o m i a l  o f  this  s p i r o g r a p h  is: 

X Is - 21X 13 - 14X 12 + 165X 11 + 2 0 4 X  1° - 5 4 9 X  9 - 1026;~ s + 5 4 3 X  7 + 2 0 3 2 X  6 

+ 5 2 5 X  s -  1410X 4 -  8 8 5 X  s + 2 2 8 X  2 + 2 8 5 X + 5 0 .  ( 2 1 )  

F igure  10 shows  a sp i rog raph  w h i c h  c o n t a i n s  n i n e  r ings.  The  c h a r a c t e r i s t i c  

p o l y n o m i a l  o f  th is  graph  is: 

X 2 s  _ 36X2(, + 544~.  24 - 4 5 1 2 X  2o + 2 2 4 9 6 X  TM - 6 9 2 4 8 X  16 + 1 2 9 7 9 2 X  l« 

- 1 4 0 2 8 8 X  12 + 7 7 8 2 4 X  1° - 1 6 3 8 4 X  a . ( 2 2 )  

Fig. 10. A branched square spirograph containing nine rings. 
The characteristic polynomial o f  this graph is given by (22). 
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Thus, the pruning method outlined here is applicable for a variety of  spiro- 

graphs, branched,  linear, circular, etc. Further applications of  spirographs in lattice 

statistics o f  Cacti will be considered in a future publication [42] .  

4. Conclusions 

In this investigation, we defined a class of  graphs which we called spirographs. 
A method  based on pruning was developed to obtain the characteristic polynomials  
o f  spirographs. This method was applied to derive elegant recursive relations for many 

spirographs. The characteristic polynomials  o f  spirographs containing triangles, squares 

and hexagons with the number  of  rings varying from one to ten were obtained. Many 

of  the polynomials  are obtained for the first time. 
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