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Abstract

A class of graphs called spirographs is defined. It is shown that the character-
istic polynomials of spirographs can be obtained in terms of the characteristic
polynomials of smaller graphs by pruning the spirographs at the spiral points.
Llegant recursive relations are derived for many spirographs. Characteristic poly-
nomials of branched spirographs are also obtained.

1. Introduction

The evaluation of the characteristic polynomials of graphs has been the subject
of many investigations [1—40] in recent years. The evaluation of these polynomials
for graphs is generally regarded as a tedious problem as a result of the combinatorial
complexity. There are a number of chemical applications of these polynomials. Many
of these applications are discussed in the references quoted above [1—34], but in
particular in the recent references [10—-13].

The characteristic polynomials of graphs have applications in chemical
kinetics [37], dynamics of oscillatory reactions, quantum chemistry, determination
of the stabilities of reaction networks [35], lattice statistics [38], estimation of the
stabilities of conjugated systems [27], formulation of the TEMO theorem ([39],
enumeration of walks and self-returning walks [3], and electronic structure of organic
polymers and periodic structures [4,11].

The present author [8,38] has been interested in deriving recursive methods to
generate the characteristic polynomials of graphs. While there are no general recursive
procedures for all graphs, recursive relations could be derived for some classes of
graphs. The present author [8] developed an elegant tree-pruning procedure for the
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characteristic polynomials of graphs with pending bonds [9] and the characteristic
polynomials of weighted trees and weighted structures with pending bonds [10].
More recently. the present author [38] showed that the method of tree pruning
could be applied to the lattice statistics of Bethe lattices, which are used extensively
in statistical mechanics.

In this investigation, we introduce a class of graphs called spirographs which
are obtained by soldering cyclic graphs at single points. The spirographs introduced
here appear in several chemical applications. Many silicates can be represented by
spiral networks. Thus. the polynomials would be of use in classifying the networks.
A class of spirographs called Cacti graphs are useful in lattice statistics in statistical
mechanics. We develop recursive procedures for computing the characteristic poly-
nomials of spirographs. The procedure is applied to a number of spirographs contain-
ing triangles, squares and hexagons. Section 2 describes the method of investigation.
Section 3 comprises results and discussions.

2. Spirographs and their characteristic polynomials

A. SPIROGRAPHS

We coin the term ‘spirographs’ motivated by the term ‘spirocycle’ used in
organic chemistry for a class of ring compounds which are obtained by joining two
rings at a single vertex such that the two rings have only one common vertex. Figure 1
shows an example of a spirograph containing two ‘4-membered rings’ or containing
two 4-cycles.

I'ig. 1. A spirograph containing two squarces.

A spirograph can be obtained from simple ring graphs by ‘soldering’ or joining
a single vertex of one ring to a single vertex of another ring so that the two vertices
are fused to become a single vertex in the final soldered graph. The resulting single
vertex is called a spiral vertex in this investigation. We show here that the characteristic
polynomials of spirographs can be obtained by pruning the spirograph at the spiral
points. The general method of pruning was developed earlier for trees. We show here
that when the pruning method is applied to spirographs correctly. one could generate
the characteristic polynomials of spirographs. In section 2B, we briefly outline the
pruning method.
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B. PRUNING METHOD AND CHARACTERISTIC POLYNOMIALS

If the spirograph in fig. 1 is cut at the spiral point, one obtains the two graphs
shown in fig. 2. with the spiral vertex identified by a closed circle. For convenience,
let us call the first graph Q (the quotient graph) and the second graph T (the type).
The graph in fig. 1 is then obtainable by joining the two black vertices (spiral vertices)

Q

Q T
Iig. 2. The two graphs resulting from pruning the spiro-
graph in fig. 1. The spiral vertex is the shaded vertex.

together into a single vertex. This procedure was formulated earlier for trees by the
present author [41] and was called a root-to-root product. We show here that the
characteristic polynomial of the original spirograph in fig. 1 can be obtained from the
characteristic polynomials of the pruned graphs Q and T in fig. 2.

The characteristic polynomial of a graph G in general is defined as the secular
determinant of the adjacency matrix A of the graph shown below:

Po(N) = 14~ N1, (1)
where the adjacency matrix 4 is defined as

1 if i % jand the

vertices i and J are connected ;
A.. = (2)

0 otherwise.

Let us consider the graphs in figs. I and 2 as examples. Let the characteristic
polynomial of type T in fig. 2 be denoted by 4. It can easily be verified that

ho=2 —4x. 3)

Let T' be the graph obtained by deleting the spiral point (black vertex) of graph T
in fig. 2. Let A’ denote the characteristic polynomial of T with the spiral point deleted.
It can easily be seen that 4’ is given by

B =2 -3\, (@)
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Define the reduced adjacency matrix of the quotient graph Q as follows:

=1 if i #j, i and j are connected. and { is not a spiral vertex

p —h' if i #j, iand j are connected, and i is a spiral vertex )

A it i =7 and iisnot a spiral vertex

h if { =j and iisa spiral vertex.

The determinant of the matrix A4 is simply the characteristic polynomial of the original
spirograph. For the example we started with, we show below the reduced adjacency
matrix with the convention that vertex 1 is the spiral vertex:

- 7 =

h —h' 0 ~h

-1 | 0 ‘
A = 6)

-1 0 -1 A

The determinant of the above matrix is easily seen to be
Det(A) = ¥h—4Nhn. (7)

By substituting for 4 and &' the expressions (3) and (4) previously obtained, we find
the characteristic polynomial of the original spirograph to be

No= 8N+ 120 (8)

Consequently, in this case, the original problem of evaluating the characteristic poly-
nomial of a graph which contains seven vertices is reduced into a problem of obtain-
ing the characteristic polynomial of a simpler non-spiro graph containing four vertices.
The procedure can be extended further to graphs which contain many spiral points.
The resulting simplification grows exponentially (!) as the number of spiral points
increases.

To illustrate the above point, consider the spirograph in fig. 3 which contains
two spiral points. Let the characteristic polynomial of a spirograph containing n
square rings be A,. One can derive actually a recursive relation for A, which can be
solved iteratively. In the present example, we seek a solution for /4,. If one prunes
the spirograph in fig.3 at the first spiral vertex and applies the method outlined
earlier, it can be shown that
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I'ig. 3. A spirograph containing three squares.

hy=Nh, —4Nh) . 9)
To obtain £, , we prune the spirograph containing two squares. Thus, /4, is given by

hy, = Nh —4Nh, . (10)
The polynomial 4} is given by

Wy, = Nhy = 2\h . (11)

Thus, s, and h; are determined if one can find 4, and #,. The polynomials 4, and
hy are simply the characteristic polynomials of a single 4-membered cycle and a chain
containing three vertices, respectively. They are given by expressions (3) and (4),
respectively. One can obtain h, and A, from h, and h,; the polynomial 4, can be
obtained once h, and h, are found. Thus, the final polynomial for the spirograph
in fig. 3 is given by

By = N0~ 1208 +40)%¢ - 32)° . (12)

In this example, the characteristic polynomial of a spirograph containing ten vertices
could be generated from the characteristic polynomial of a square graph and a chain
containing three vertices.

The above procedure could be generalized to any spirograph containing » rings,
For a linear spirograph which contains »n square rings, we obtain the following
recursive relations. Let A, denote the polynomial of such a spirograph containing
n rings. Using the pruning method developed earlier, the following relations can be
derived:

h,=Xh,_, —4Xh _,
- 4Nh,

n 2 n-=2

h,_, =Nh, _
' (13)
h, = >\2h; ~ 4\hy
Ry =2~ 4N
hy =N =3\,
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Thus, closed analytical solutions exist for the characteristic polynomials of linear-
spirographs containing » square rings. As we show in the next section, similar recursive
relationships can be obtained for many spirographs.

3. Results and discussion

In this section, we consider many classes of spirographs and derive recursive
relationships and the actual characteristic polynomials.

For the linear-square-spirographs, the recursive relations (13) for the character-
istic polynomials were derived in section 2B. Table 1 shows the actual characteristic

Table 1
Characteristic polynomials of linear-square-spirographs ()Q( )n

n Polynomial

1 At - 4N

2 AT — 8N+ 12N

3 AC 12 4000 - 32N

4 AP 16N + 84N - 160N + 80N

5 A 20A + 144017 - 44800 + 5600° — 1921

6 ALE 24N 4 220M15 - 960X + 2016AM — 17920 + 448N

7 A — 28N%° +312A'% — 176006 +5280N"% — B064A'* + 53761 — 1024A°
8 AT - 32X+ 420M% — 2912 + 11440017 — 25344N° + 29 568A\'°

— 15360A" +2304N°

9 A8 36A + 544024 — 4480A7° + 21 8400%° — 64 064\1% + 109 8240'¢
— 101 376)N% +422400\7 — 51200!°

10 Nt~ 4007 + 684227 — 65287 +38080A% — 139776 + 3203200
— 439296AY7 + 3294720 — 112640A"3 + 11264\

polynomials for linear-square-spirographs for n = 1 to 10. All the polynomials shown
in the table were obtained using the recursive relation derived in section 2B from
simply the characteristic polynomial of a cycle containing four vertices (C,) and a
linear chain containing three vertices (/;).

Next, we consider a set of linear-triangle-spirographs. Figure 4 shows an
example of a linear-triangle-spirograph containing six rings. The method of pruning
the spirograph at the spiral points can be applied to the triangle spirographs. Let h,
denote the characteristic polynomial of a triangle spirograph which contains » rings.
The the recursive relations for #,’s are shown in table 2. Table 3 shows the actual
characteristic polynomials of linear spirographs containing ten or less triangles.
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MW/\

Iig. 4. A linear spirograph which contains six triangles.

Table 2 o
-/i\
Recursive relations for the linear-triangle spirographs (\ \/)
’ n

VAR
h, AN~ 3N-2
h, A -]
h, AhE — AR - 2h k- 2R}
h, Ah, — h,
- 2 '2 ' re
hy = }\hn-x‘)‘hn-l"zhn-lhn—x~2hn—x
Table 3

Characteristic polynomials of spiro-triangle-graphs (n = 1, 10)

Polynomial

10

A - 3\-2

AN 6A — 4N +50+4

A — 9N — 6AT + 193 +20A% - 3A -6

A= 1207 — BA® 4205 + 48N — 320% — 56AT _TA+8

AT 152° — 10A% + 7407 + 88X — 114A°% — 2040 + A3 + 11227 +29A — 10
AP 18N 12AM0 + 115A° + 14008 — 276N — 504A° + 123A° +5920° + 178X
— 172N — 677+ 12

A5 21N 14AM? 4 165AM +204A"° — 545)° — 1010A% + 5397 + 1944)°
+4530° — 1266\* - 677A% +196X* + 1251 — 14

AT 24015 — 16AM + 224013 +280N'% — 948AM — 1776A'° + 151007 + 4880
+ 53607 — 5488 — 3068A% +1952)\% + 1712A% — 112A* — 207A+16

A% 2717 — 18N + 292015 4+ 368AY — 1512A1F — 2856A1% + 3378AM
+10328A — 4582° — 1726075 — 90200 + 113442° + 1060425 — 1592A%

— 3471A% — 192A* + 3171 - 18

A 30A1 — 2008 + 3697 +468A'6 — 2264M° — 43040 + 65660"2
+1943202 — 4224N" — 44 040N'° — 19910A° +454000% +42152%

— 14 6082° — 27227A%5 — 22722% +5978A% + 876A% — 459A +20
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In comparing the results in tables 1 and 3, we note that the coefficient of the
second term in the characteristic polynomials of both the classes of graphs is given by

—m-n, (14)

where m is the number of vertices in individual rings (four for square, three for tri-
angle) and #» is the number of rings in the spirograph. For spirographs containing
squares. the lowest power in the characteristic polynomial is given by N'*'. The
coefficient of this term is always a multiple of four. In fact, the coefficients of all
the terms in the characteristic polynomials of square spirographs are found to be
multiples of four.

The pruning method developed in section 2 can be applied to even more
complicated spirographs. Consider a class of spirographs which contain hexagons. An
example of a linear spirograph containing three hexagons is shown in fig. 5. Suppose 4,

I'ig. 5. A lincar spirograph which contains threc hexagons.

denotes the characteristic polynomials of linear spirographs containing n hexagons.
Then recursive relationships can be derived for A, s for various n’s using the pruning
method in section 2. Table 4 shows the final characteristic polynomials of linear
spirographs containing up to eight hexagons. All the polynomials were derived from
simply the characteristic polynomials of a hexagon (C,)) and a linear chain of length
five (/). The second coefficient of the polynomials for the linear spirographs
containing hexagons also follows the same pattern previously discussed. The magni-
tude of the constant coefficient of the polynomials in table 4 follows the general
expression

| = 0 if niseven (15)
471 if nis odd.

Further, the constant coefficients alternate in sign for n = 1, 3,5, 7. etc.

Finally, we would like to show that the pruning method is applicable even
if there are multiple spiral points in a given ring. As an example of this, consider the
spirograph which contains three triangles shown in fig. 6. When the spirograph in this
figure is pruned simultaneously at the two spiral points, one obtains the quotient
graph Q and two sets of type T in fig. 7. The reduced adjacency matrix 4 for Q is:
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Table 4

Characteristic polynomials of linear spirographs containing hexagons

Polynomial

oW o

A — 6AT 9N — 4

NP - 12X° + 5007 — 9205 +77AY — 24A

NE L 18AM + 127M1% — 456N° +911A% — 1034 + 641\ — 188AF + 16

N 24000 4+ 24007 — 1312A'5 +4338A1 — 9080A +12216X° — 10448)
+5429A° — 1536A% + 176A

A6 — 3020 +389A7F — 2876A% + 13490A1% — 42324\'¢ +91 298\

~ 13694477 +1424450M° — 10083073 + 465532° — 12868A% + 17602 — 64
MY 36T + 57407 — 53645 + 32795 — 138 800A% +419956A'°

— 925160 +1496871A'" — 1779076A" + 15395987\ — 950 500°

+403 101N — 109672A° + 16 736A — 1024

ANE — 4233 + 795N — 8992A%° + 67 977A — 364 190N*° + 1431467\

— 42174200*% +94363312% — 16143 846A'% +211458650'% — 21113992
+ 15894 7472 — 8843410A° +3517489A% - 945996)° + 155632)\°

— 12672 + 256

N 48A% + 105207 — 13976A° + 12605627 — 8196002 + 39826842
— 14 803 560A%7 +42 737202A*% — 96 770336A%° + 172 806 084

— 243777 000A" + 271009 936" — 236 160336A'° + 159286 7723

— B1642776A\" +308845490° — 8233168\ +1431120A° — 140032A°
+5376A

Fig. 6. A linear spirograph
containing three triangles.

VAN

Q T

Fig. 7. The quotient graph Q and type T (twice)
resulting from pruning the graph in fig. 6.
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A -1 -1
-, hy,  —h (16)
~h,  —h, h,

The determinant of the above matrix is
N = hEYy = 2h hy = 20} (17)

If one substitutes for i1, and /; by the expressions in table 3 for the triangular graphs,
one obtains the final polynomial as

MM =3A=2P2 - (-1 - 2N -3A=-2)(P=1) -2 =-17. (18)

Upon simplification, the above expression yields the characteristic polynomial of the
graph in fig. 6 to be

N 9N —6A + 1907 +20N - 3N —6. (19)

The proposed method can also be applied to other irregular branched spiro-
graphs or circular spirographs. Consider. for example. the triangular spirograph in
fig. 8. The characteristic polynomial of this graph can be obtained in two steps of
pruning. The simplified expression for the polynomial is:

A — 18N = 1200 4+ 11507 + 14008 — 28427 — 53608 + 11905 + 7280\
+ 366N — 1567 — 171\ ~ 36. (20)

VANEVAN
NN/

Iig. 8. A branched triangular spirograph containing six rings. For
the characteristic polynomial of this graph, see expression (20).
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Fig. 9. A branched triangular spirograph containing scven rings. oy
the characteristic polynomial of this graph, sce expression (21).

Consider the branched triangular spirograph in fig. 9. The characteristic poly-
nomial of this spirograph is:

NS = 2113 = 14012 4 165N + 204010 — 5490 — 10260°% + 54307 +2032)°

+ 5250° — 14100 — 88527 + 228N + 285\ + 50. (21)

Figure 10 shows a spirograph which contains nine rings. The characteristic
polynomial of this graph is:

A2 — 36026 + 54402 — 4512020 +22496N8 — 6924806 + 129792\
— 140288\% + 7782400 — 16384)8 . (22)

IFig. 10. A branched squarc spirograph containing ninc rings.
The characteristic polynomial of” this graph is given by (22).
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Thus, the pruning method outlined here is applicable for a variety of spiro-
graphs, branched, linear, circular, etc. Further applications of spirographs in lattice
statistics of Cacti will be considered in a future publication [42].

4, Conclusions

In this investigation. we defined a class of graphs which we called spirographs.
A method based on pruning was developed to obtain the characteristic polynomials
of spirographs. This method was applied to derive elegant recursive relations for many
spirographs. The characteristic polynomials of spirographs containing triangles, squares
and hexagons with the number of rings varying from one to ten were obtained. Many
of the polynomials are obtained for the first time.
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